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We present a simple method for extracting interference effects
between chemical shift anisotropy (CSA) and dipolar coupling
from spin relaxation measurements in macromolecules, and we
apply this method to extracting cross-correlation rates involving
interference of amide 15N CSA and 15N–1H dipolar coupling and
interference of carbonyl 13C* CSA and 15N–13C* dipolar coupling,
in a small protein. A theoretical basis for the interpretation of
these rates is presented. While it proves difficult to quantitatively
separate the structural and dynamic contributions to these cross-
correlation rates in the presence of anisotropic overall tumbling
and a nonaxially symmetric chemical shift tensor, some useful
qualitative correlations of data with protein structure can be seen
when simplifying assumptions are made. © 1998 Academic Press
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INTRODUCTION

The fact that the interference between chemical shift aniso-
tropy (CSA) and dipolar coupling causes the two lines of
scalar-coupled doublets to have different linewidths (1) is well
known. The interference effects also show up in cross-corre-
lation corrections to various spin relaxation rates that are easily
measured in solution, and the fact that these effects are a useful
source of structural and dynamic information is being increas-
ingly appreciated. With sufficient measurements it is in prin-
ciple possible, although in practice difficult, to separate dy-
namic and structural factors. In this paper we provide a simple
method for measuring interference effects between CSA and
dipolar coupling in a scalar-coupled two-spin system, and
present a theoretical basis for their interpretation.

Structural information arises from an ability to monitor the
projection of the anisotropic part of the chemical shift tensor
onto various bonds connecting spin1

2
nuclei. Several authors

have been able to measure the CSA projections for nuclei in
sites along the protein backbone, which include amide15N (2),
amide1H (3, 4) and13Ca (5), in solution. The CSA projections
of the nuclei in the13Ca sites have been shown to correlate
extremely well with secondary structure, and those in the
amide1H sites show a strong correlation with hydrogen-bond
strength (3, 4). The CSA of the13C9 (carbonyl carbon), which
is quite substantial, is also expected to be very sensitive to local
structural effects. There have been some experimental (6–9)
and theoretical studies (6, 10) on related systems indicating this
fact. Dynamic information arises in a manner similar to its
appearance in autorelaxation rates, but correlation time relates
to the way in which two interaction vectors follow one another
during reorientation. Hence, measurements can complement
normal spin relaxation measurements. Aside from this poten-
tial complementarity, there has also been a renewed interest in
more conventional studies of the relaxation behavior of the
13C9 in proteins over the past year or so. These studies, even
without cross-correlation consideration, provide insight into
the dynamics of the protein backbone (11–15) and complement
the information obtained from amide15N relaxation studies.

The method for measuring CSA–dipole cross-correlation ef-
fects presented in this paper is based on that proposed by Tjandra
and Bax (2). Our modification simplifies the dependence of the
signal intensity on the relaxation delay. We apply this method to
extract the cross-correlation rates between amide15N–1H and the
amide 15N CSA in a 15N-labeled protein, a fragment of the
chaperon protein DnaJ (28). This is followed by the application to
a 13C, 15N-enriched form of the same protein, to extract cross-
correlation rates between13C9 CSA and15N(i 1 1)–13C9(i) dipo-
lar coupling. We also present a preliminary analysis of these rates
in structural and dynamic terms, pointing out the difficulties one
faces in the analysis when the overall tumbling of the protein is
anisotropic.

THEORY

The two I spin lines of an antiphase doublet for a scalar-
coupled two spin-1

2
(I, S) system may be represented as I6 5
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1
2
(2IySz 6 Iy). In the case, where the difference in the decay

rates between the inphase and antiphase terms of the density
matrix is much smaller than the coupling constantJ, and the
relaxation delay is much greater than 1/J, the relaxation
rates of I6 may be approximated asl 6 h, wherel is the
average of the inphase and antiphase decay rates andh is the
cross-correlation rate due to interference effects between the
CSA of spin I and the IS dipolar coupling. In the case of an
axially symmetric chemical shift tensor with principal axis
coincident with the dipolar interaction vector,h can be
expressed as

h 5 2
1

6

m0

4p

g I
2gSh

r IS
3 DsB0@4Jx~0! 1 3Jx~v I!#, [1]

wherer IS is the IS internuclear distance;Ds 5 s\ 2 s', is the
difference ofs\ and s', the parallel and perpendicular com-
ponents of the principal chemical shift tensor; andJx(0) and
Jx(vI) are values of the cross-correlation spectral density func-
tions The cross-correlation spectral density functionsJx(v) are
defined by

Jx~v! 5 E
0

`

Gcd~t!cos~vt!dt, [2]

where Gcd(t) is the cross-correlation function for chemical
shift anisotropy–dipolar coupling interference effects (see Ap-
pendix). The latter are in general different from the autocorre-
lation spectral density functions,Ja(v).

The situation becomes rather complicated if the overall
tumbling of the molecule is anisotropic (16), but some simpli-
fication occurs when the rotational diffusion is axially sym-
metric. The cross-correlation spectral density functions, in this
case, are given by (see Appendix) (2)

Jx~v! 5 O
l50

2 ~Sx
l !2t l

1 1 v2t l
2 1

@Al
x 2 ~Sx

l !2#t

1 1 v2t2 , [3]

wheret0 5 (6D2)21, t1 5 (D1 1 5D2)21, t2 5 (4D1 1
2D2)21, and 1/t 5 1/te 1 2 Tr[D] 5 1/te 1 (2D1 1 4D2)
(it has been assumed thatte ! 1/D1, 1/D2). Here,D is the
diffusion tensor;D1 andD2 are the principal elements of the
diffusion tensor which are parallel and perpendicular to its
unique axis (2). Sx

l is a component of the generalized order
parameter,Sx (defined in the Appendix), for CSA–dipole
cross-correlation, andte 5 (6Deff)

21 is the correlation time for
internal motion which occurs on a timescale which is much
faster than the overall tumbling (Deff is the effective diffusion

constant for the internal motion (17). The coefficientsAl
x are

given by

A0
x 5

1
4

~3 cos2uc 2 1!~3 cos2ud 2 1!

A1
x 5

3
4

sin~2uc!sin~2ud!cos@fc 2 fd]

A2
x 5

3
4

sin2(uc)sin2(ud)cos[2(fc 2 fd)], [4]

whereuc andud are the angles made by the unique axis of the
shift tensor and the internuclear vector, with the unique axis of
the diffusion tensor, respectively, andfc and fd are the cor-
responding azimuthal angles (2, 18). As shown in the Appen-
dix, in the absence of internal motion, (Sx

l )2 5 Al
x.

The autocorrelation spectral density functions are given by
(see Appendix)

Ja~v! 5 O
150

2 ~Sa
l !2t l

1 1 v2t l
2 1

@Al
a 2 ~Sa

l !2t#

1 1 v2t2 . [5]

As in the case of cross correlation, in the absence of internal
motion, (Sa

l )2 5 Al
a. The coefficients,Al

a, for the autocorrela-
tion spectral density functions are given by

A0
a 5

1
4

~3 cos2ud 2 1!2

A1
a 5

3
4

sin2(2ud)

A2
a 5

3
4

sin4(ud). [6]

In order to obtain expressions analogous to conventional
Lipari–Szabo theory (17), we express the auto- and cross-
correlation spectral density functions using effective order
parameters, as

Jx~v! 5 Sx
2 O

l50

2 Al
xt l

1 1 v2t l
2 1

~1 2 Sx
2!t

1 1 v2t2 [7]

Ja~v! 5 Sa
2 O

l50

2 Al
at l

1 1 v2t l
2 1

~1 2 Sa
2!t

1 1 v2t2 . [8]

However, it should be realized that, in general, defining one
order parameter for the internal motion is not possible when the
overall motion is not isotropic (see Appendix). We see that the
“order parameters” for cross correlation in [7] and for autocor-
relation in [8] both give an indication of local order, or a lack
of it, but there is no simple relationship between the two, and
thus, they would not correlate very well, even in the absence of
anisotropic local motion.

Things are simplified greatly for isotropically tumbling mol-
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ecules. In this case, the cross-correlation functions are given by
(see Appendix)

Jx~v! 5
Sx

2tc

1 1 v2tc
1

~P2@cos~ucd!# 2 Sx
2!t

1 1 v2t2 , [9]

wheretc 5 (6D)21 is the rotational correlation time, 1/t 5
1/tc 1 1/te, anducd is the angle between the principle axis of
the shift tensor and the internuclear vector. This is identical to
the expression obtained by Fischeret al. (19). In this case,
complete separation of the overall and internal motion is pos-
sible and the internal motion can be represented by a single
order parameter. The corresponding autocorrelation function is
given by (see Appendix)

Ja~v! 5
Sa

2tc

1 1 v2tc
2 1

~1 2 Sa
2!t

1 1 v2t2 . [10]

For most reasonable models of motion of nuclei in the peptide
plane, the cross-correlation order parameter may be approxi-
mated bySx

2 5 P2[cos(ucd)]Sa
2, whenucd is small. Using this

in [9] and comparing with [10], we have

Jx~v! 5 P2@cos~ucd!#J
a~v!. [11]

Using [11] in [1], we have for an isotropically tumbling mol-
ecule with an axially symmetric chemical shift tensor

h 5 2
1

6

m0

4p

gI
2gSh

r IS
3 Ds

1

2
~3 cos2ucd 2 1! B0@4Ja~0! 1 3Ja~vI!.#

[12]

It is possible to extend [1] to the case where the chemical
shift tensor is not axially symmetric. In that case it may be
written as a sum of two axially symmetric shift tensors each
with its unique axis (1) allowing [1] to be rewritten as

h 5 2
1

6

m0

4p

gI
2gSh

rIS
3 B0 O

k51,2

Dsk@4Jx~k!~0! 1 3Jx~k!~vI!#, [13]

whereDs1 5 1
2

(s33 2 s11) andDs2 5 1
2

(s33 2 s22) are the
effective anisotropies for the two axially symmetric parts of the
shift tensor ands ii (i 5 1, 2, 3) are the principal components
of the shift tensor. In the case of a spherically symmetric
molecule, which tumbles isotropically, this, in analogy to [12],
yields

h 5 2
1

6

m0

4p

g I
2gSh

r IS
3 @Ds1P2~cos~ucd

1 !! 1 Ds2P2~cos~ucd
2 !!#

3 @4Ja~0! 1 3Ja~v I!#, [14]

where ucd
1 and ucd

2 are the angles made by the two axially

symmetric components of the shift tensor with the IS inter-
nuclear vector. The quantity within the brackets in [14]
is the projection of the anisotropy of the shift tensor on
the IS internuclear vector and is represented byDs9. How-
ever, it should be remembered that [14] is a crude approx-
imation since bothu1 and u2 cannot be close to zero at the
same time.

EXPERIMENTAL DESIGN

The pulse sequences we propose for the measurement of
the cross-correlation ratehN are shown in Figs. 1a and 1b.
An inspection of these sequences reveals that they are, in
essence, identical to those proposed by Tjandraet al. (2),
except for one major difference—the relaxation delay is
decremented with the evolution time, in an accordion (20 –
23) fashion. Thus, it has a value of 2t for the very firstt1

point and a value of 2t 2 t1 at an intermediatet1 point. Both
schemes are based on the following principle: one starts
with a density operator given by 2IySz at the beginning of the
relaxation delay, and the two components of the antiphase
doublet, represented by1

2
(2IySz 6 Iy), relax with relaxation

rates given byl 6 h. This differential relaxation causes a
buildup of the in-phase component Iy at the end of the
relaxation period, 2t 2 t1. For the very firstt1 point, the
relevant portion of the density matrix after the relaxation
delay (which in this case is equal to 2t) may be expressed as
2IySz[e

22(l1h)t 1 e22(l2h)t] 1 Iy[e
22(l1h)t 2 e22(l2h)t]. For

FIG. 1. Experiments to estimatehN. Scheme I: The narrow and thick lines
representp/2 andp pulses, respectively. The short thick bars at the end of the
experiment represent selectivep/2 pulses on water. All pulses are along the
x-axis unless otherwise stated.f1 5 { x, 2x}; f2 5 {2( x), 2(2x)}; f3 5
{ x}; f4 5 {4( x), 4(2x)}; f5 5 {2( x), 2(2x)}; and f6 5 { y, 2y}.
Quadrature detection int1 is achieved by cyclingf3 in a States–TPPI fashion.
All gradients are 1.5 ms long and are of strength 29 G/cm, exceptGa, which
is 23.2 G/cm. The delayd is set approximately 2.6 ms.Ga andGd were along
the x- andz-axes;Gb andGc were alongx- andy-axes. In scheme II, the1H
p/2 pulse labeledf7, the1H p pulse labeledf8, and the gradientGb were not
applied.
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any arbitraryt1 point, the density matrix at the end of the
relaxation period (2t 2 t1) may be represented by

s~2t 2 t1! 5 2IySz@e
2~l1h!~2t2t1! 1 e2~l2h!~2t2t1!#

1 Iy@e
2~l1h!~2t2t1! 2 e2~l2h!~2t2t1!#. [15]

The scheme shown in Fig. 1 is designed to detect the compo-
nent of the density matrix which is represented by Iy at the end
of the relaxation period (2t 2 t1); we call this scheme I. The
experiment to detect the 2IySz component (called scheme II) is
similar to that in scheme I, except that the1H p/2 pulsef7,

1H
p pulsef8, and gradientGb are not applied. Assuming for the
time being that chemical shift evolution can be made identical
for the two schemes and these effects can be represented by a
functionF(v, t1), we obtain the signals in scheme I (Q1) and
scheme II (Q2) at the beginning of the detection period as

Q1 5 ^Iy&~2t! 5 K@e22~l1h!te1ht1 2 e22~l2h!te2ht1#F~v, t1!

Q2 5 ^2IySz&~2t!

5 K@e22~l1h!te1ht1 1 e22~l2h!te2ht1#F~v, t1!, [16]

where K is a constant which relates to the measured signal
intensity. As is evident from Fig. 1, the length in time of the
two schemes is the same and so are the relaxation losses (to a
very good approximation); thusK is taken to be the same in
both expressions (i.e., forQ1 andQ2). We construct two new
datasetsQs andQd, which are obtained by taking the sum and
difference of the two signals. These are given by

Qs 5 Q2 1 Q1 5 2K@e22~l1h!t#e1ht1F~v, t1!

Qd 5 Q2 2 Q1 5 2K@e22~l2h!t#e2ht1F~v, t1!. [17]

The ratio ofQd to Qs gives a particularly simple dependence
on the relaxation timet. This is represented by

Qd

Qs

5 e4htFe2ht1

e1ht1G . [18]

Thet1 dependence can be removed by using the integrals of the
Fourier-transformedt1 datasets represented by the numerator
and the denominator of [18]. Amplitudes of peaks in the
transformed spectra can also be used if the value ofh is small
and identical window functions are used for the sum and
difference datasets. Simulations with anh value of 4.0 s21, a
2t value of 70 ms and a Kaiser window (argument 10) show
that using peak amplitudes underestimates the value ofh by
;15% (this decreases with decreasingh values), whereas
using integrated intensities yields the correct value. We there-
fore chose the latter option.

In the above discussion we assumed that evolution of the
relevant terms duringt1 was the same in the two schemes by
using the sameF(v, t1) for both Q1 and Q2 in [16]. This,

however, is not the case. Consideration of the details of chem-
ical shift evolution duringt1 shows that some additional data
manipulation is required before taking the sum and differences
as in [17]. Inspection of Fig. 1 reveals that after the relaxation
period, (2t 2 t1), the magnetization is stored alongz in both
schemes. In scheme I, the1H (p/2)x pulse immediately after
the relaxation period generates22IzSy magnetization (where
I 5 15N and S5 1H), and this is defocused using a gradient.
The subsequent15N (p/2) is cycled in a States–TPPI (24)
fashion (x, y). In the case of scheme I, an15N (p/ 2)x creates
2Iy which at the start of thet1 evolution period is22IxSz. The
evolution of this term duringt1 is given by22IxSzcos(vt1) 2
2IySzsin(vt1). Only the second term is finally detected since
the first is converted to undetectable double quantum coher-
ence. This point constitutes the real part of the complex mag-
netization, int1. The imaginary part is generated by the15N
(p/2)y pulse, which creates Ix. At the beginning oft1 this gen-
erates 2IySz, which evolves as 2IySzcos(vt1) 2 2IxSzsin(vt1).
Again, only the 2IySz part is detectable. Thus, the oscillatory
part of the magnetization in scheme I may be represented as
{Re part, Im part}5 { 2sin(vt1), cos(vt1)}. In scheme II, the
1H (p/ 2)x pulse after the relaxation delay (2t 2 t1) and the
gradient following it are not applied. Using similar arguments
and a simple product operator treatment, as in the case of
scheme I, we have, for scheme II, {cos(vt1), sin(vt1)}. To
generate an identical evolution behavior to scheme I we first
exchange real and imaginary parts for the signal in scheme II
to get {sin(vt1), cos(vt1)}; then we replacev by 2v (equiv-
alent to complex conjugation) in the transformed signal for
scheme II, to obtain {2sin(vt1), cos(vt1)}, which is identical
to scheme I. This allows us to perform the addition and
subtraction to generate the two datasets in [17].

The extension of the two schemes shown in Fig. 1 to an
experiment to measureh for the cross correlation between13C9
CSA and13C9–15N dipolar coupling is quite straightforward.
The pulse sequences are based on an HNCO (25) type exper-
iment as shown in Fig. 2 (scheme I). In the corresponding
scheme II, the15N p/2 pulsef8 and the15N p pulsef9 are
not applied. There are, however, a few important points to
note. The two selective13Ca pulses are applied during the
relaxation period in order to prevent the buildup of terms
like 2IyMz (I 5 13C9, M 5 13Ca) from 2IySz (S 5 15N) due
to cross correlation between the13C9–13Ca and 15N–13C9 di-
polar interactions (26) or the buildup of 4IyMzSz due to cross
correlation between the13C9 CSA and the13C9–13Ca dipolar
interaction. A gradient is also applied during thez-storage
period after the relaxation delay in scheme II, which destroys
some additional spurious terms.

The advantages of the above schemes in comparison to that
originally proposed by Tjandraet al. (2) are open to debate. In
fact, by taking appropriate sums, differences, and ratios of the
two data sets collected by Tjandraet al.,an identical functional
relationship betweenh andt can be derived. However, the data
collection in our case, for a givent, is actually collected over
a range of relaxation delays ast1 is incremented. There may be
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advantages in collecting over a range of relaxation times in that
systematic errors that aret dependent may average to a smaller
value. There is also some advantage in having data presented in
a form in which the option of directly extracting relaxation
rates by fitting thet1 time dependence presents itself (see Eq.
[18]). In that case, where auto- and cross-relaxation rates are
equal, the dependence ofQd is particularly simple. The au-
torelaxation rate,l, in the case of15N, is dominated by the
15N–1H dipolar interaction at low field and is initially indepen-
dent of the strength of the applied static magnetic field. The
cross-correlation rateh, on the other hand, increases linearly
with the applied static field strength. At appropriate high fields
these two rates become equal. Peruvshinet al. have taken
advantage of the cancelation of these two rates to maximize
resolution in heteronuclear 2D experiments. It can be seen
from [17] that under these conditions, and prior to Fourier
transformation int1, the individual indirect FID,Qd, can be fit
as a function oft1 to obtain a value forh.

EXPERIMENTAL

The experiments to determinehN were performed on a 3.0
mM 15N-labeled sample ofE. coli DnaJ(1–78) in phosphate
buffer at pH 6.0, at 30°C. The preparation of the protein and its
structural characterization have been discussed in previous
publications (28, 29). Duplicate datasets for each scheme were
collected using 2t 5 75.0 ms with 110 complex points in the
15N dimension, acquiring 64 transients per indirect point. The

number of points in the direct dimension was 512. The sweep
widths in the direct and indirect dimensions were 6006.0 and
1519.0 Hz, respectively. The data in both dimensions were
apodized using a Kaiser window and zero-filled to double the
size (or to the nearest power of 2) prior to Fourier transforma-
tion. A series of spectra were also collected with 2t 5 52.0,
62.0, 72.0, 82.0, 92.0, and 102.0 ms, with matrix sizes of
64(t1) 3 512(t2), with 32 transients collected pert1 point.
The indirect sweep width in these cases was taken to be 1538.0
Hz. The data were processed in the same way as above. The
delay between scans was set to 2.0 s for all the above exper-
iments. All experiments to determinehN were performed on
GE Omega spectrometer operating at a1H frequency of 500
MHz and equipped with a triple resonance probe capable of
generating magnetic field gradients along all three axes.

The experiments to determinehC were performed on a 2.0
mM 15N, 13C-labeled sample ofE. coli DnaJ(1–78) in phos-
phate buffer at pH 6.0, at 30°C. Duplicate sets of data were
collected for each scheme with 2t 5 50.0 65.0 ms. One
hundred twenty complext1 points were collected with a sweep
width of 2500.0 Hz in the13C9 dimension, with 64 transients
per t1 point; 256 complex points were collected in the direct
dimension with a sweep width of 6000.0 Hz. The recycling
delay was set to 2.0 s as in the case of the15N experiments. A
p/2 pulse on13C9, followed by the application of a gradient, at
the start of the experiment, helped destroy the13C9 magneti-
zation. The data were processed in the same way as in the case

FIG. 2. Experiments to estimatehC. Scheme I: The phase cycling is as follows:f1 5 { y, 2y}; f2 5 {2( x), 2(2x)}; f3 5 {4( x), 4(2x)}; f4 5 { x};
f5 5 {8( x), 8(2x)}; f6 5 {16( x), 16(2x)}; and f7 5 { 2x, 2(x), 2x, x, 2(2x), x}. The 13Ca pulses are off-resonance square pulses. The13C9 p/2
andp are adjusted in RF strength to be=15/(4t) and=3/(2t) in length, respectively, in order to prevent excitation of13Ca (the carrier was placed in the center
of the 13C9 region andt is the difference in Hz between the center of the13C9 region and the13Ca region). The gradientsGa, Gb, Gc, andGe are of duration
1.0 ms and have strengths 10.0, 20.0,230.0, and 20.0 G/cm, respectively.Gd was of duration 1.5 ms and had a strength of 32.0 G/cm. The corresponding values
of duration and strength forGf andGg were 2.0 ms and 32.0 G/cm, and 0.5 ms and 10.0 G/cm, respectively. The delaysd andD are approximately 2.6 and 12.5
ms, respectively. In scheme II, the15N p/2 pulse labeledf8 and the15N p pulse labeledf9 were not applied.
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of the hN data. All the13C data were collected on a Varian
Unity spectrometer operating at a1H frequency of 500 MHz,
equipped with a triple-resonance probe capable of generating
magnetic field gradients along thez-axis. All data were pro-
cessed using the Felix 95.0 suite of programs available from
Biosym/MSI, San Diego, CA.

RESULTS AND DISCUSSION

The sum dataset for the15N case is shown in Fig. 3 (the
difference dataset is visually similar). This resembles an HSQC
spectrum. The spectrum shows very good dispersion in both15N
and1H dimensions, and the values ofhN can be measured for 62
(well-resolved) out of the 78 residues. The signal buildup as a
function of the delay, 2t, for a few residues is shown in Fig. 4.hN

estimated from the buildup curves using a nonlinear least squares
fit to [18] yielded values which were consistent with those ob-
tained directly from [18] for a given value of 2t. The fits to [18]
were performed using the ODRPACK subroutines (30).

Individual t1 FIDs for the sum (Qs) and difference (Qd)
were also analyzed for a few select residues for the 75-ms
dataset (results not shown). The FIDs were obtained by select-
ing a crosspeak in transformedQs and Qd spectra loading a
column through a given15N chemical shift and then inverse
Fourier transforming in thet1 dimension. The values ofh were
estimated from the FIDs by Bayesian analysis using the pro-
gram XRambo (31). In this case some effort must be made to
take account of leakage from nearby columns. On inverse
Fourier transformation, the FID obtained may contain compo-
nents due to those resonances with15N chemical shifts close to

the one in question. In the Bayesian analysis, the frequencies of
these resonances were supplied along with the frequency of the
resonance in question, and the correspondingh values were
extracted. The values ofh thus obtained were consistent with
those obtained directly from [18] though the errors were 5–6%
larger for the residues considered.

The hN values displayed in Fig. 5 were estimated from the
75.0-ms datasets using [18] directly. This method was the least
time consuming and as mentioned above produced results
consistent with the other two methods, i.e., nonlinear least
squares fits for varioust values and Bayesian estimation ofh
values from theQs andQd interferrograms. The random errors
were estimated from two identical experiments. The values of
hN seem to be quite uniform over the DnaJ(1–78) sequence
having an average of 4.06 0.8 s21. The average values are
consistent with those expected for a protein this size (4a, 32).
Some smaller values were found at the N and C terminal ends
and near residues 34, 38, 41, 53, and 64. Residues 34, 38, and
41 are part of an extended loop betweena helices which end
at residue 31 and begin at residue 41 and lower values may be
reflecting shorter correlation times (28). Increased mobility for
this region is also reflected in15N relaxation rates and NOEs.

The origin of the decrease at 53 and 64 is less clear. The15N
chemical shift tensor is known to be almost axially symmetric
with the principal axis of the shift tensor making an angle of
20–24° with respect to the NH internuclear vector. The magnitude
of Ds is about2160 ppm (33–35). Variation in these values could
lead to the noted decreases, but existing data suggest that these
values seldom vary over the protein backbone (2).

FIG. 3. The sum dataset from the experiment to determinehN in 15N-labeledE. coli DnaJ(1–78). The difference dataset is similar in appearance.
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It is to be mentioned here that DnaJ(1–78) is a highly
nonspherical protein; the principal moments of inertia are in
the ratio 1.0:0.91:0.26 (almost axially symmetric). Thus the
overall tumbling of DnaJ(1–78) can be considered highly

anisotropic though axially symmetric. For a protein this aniso-
tropic, it is to be expected that there would be some variation
in relaxation behavior due to different angles of interaction
vectors with respect to diffusion axes. There would also be

FIG. 4. Buildup of the signal (for the experiments to determinehN) as a function of relaxation delay 2t, plotted for selected residues, showing the range
of buildup rates (hN).

FIG. 5. Values ofhN plotted against residue number forE. coli DnaJ(1–78).
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some divergence of the cross-correlation- and autocorrelation-
dependent relaxation parameters. However, these vanish as the
angle between the principal axis of the15N shift tensor and the
NH internuclear vector becomes small. Thus, some of the
variation in Fig. 5 may also come from the anisotropic overall
tumbling of the protein.

A spectrum resulting from the sum dataset for the13C
experiments is shown in Fig. 6 (the difference dataset is visu-
ally similar). This resembles a 2D HNCO (25) spectrum with
the indirect dimension yielding13C9 chemical shifts and the
direct dimension yielding amide1H chemical shifts. The dis-
persion is moderately good in the indirect dimension and can
be improved by extending the experiment to three dimensions
by using amide15N evolution. As is shown in Fig. 7, the values
of hC show a larger deviation along the DnaJ(1–78) sequence
than in the case of thehN values. The average value for 51
(well-resolved) of the 78 residues was20.9 6 0.4 s21, a
reasonable number in view of expectations for a molecule of
this size. But, the variation is at first surprising.

As in the case of15N, both differences inDs andJ(v) could
contribute to the variation in the values ofhC over the protein
backbone. But, unlike the15N case, there is reason to expect
some variation inDs due to hydrogen bonding and other
effects. Ideally we would like to separateDs andJ(v) effects
so these variations can be observed. If we assume a model
where the sameJ(v) terms contribute to bothhN andhC, as
would be the case in an isotropic model, we can attempt to
separate contributions due to variations inJ(v) andDs. This,
of course, is not strictly valid for DnaJ(1–78) but can, never-
theless, be instructive. Under this assumption,hN rates can be
used to estimateJa(0) from [12]. It can be further assumed that

since the NH and the NC vectors are part of an approximately
rigid peptide unit, they experience similar local motion and
hence share the same autocorrelation spectral density function
Ja(0). It would then be possible to obtain a measure forDs9
which is the projection of the13C9 CSA on the NC internuclear
vector by using the expression

Ds9 5
hC

hN
SgNgH

gC
2 DS rNC

r NH
D 3 ~3 cos2u 2 1!

2
DsN. [19]

HereDsN is the chemical shift anisotropy of15N (assumed to
be 2170.0 ppm),u is the angle between the NH internuclear
vector and the principal axis of the15N chemical shift tensor
(assumed to be 20°),rNH is the N–H bond length (taken to be
1.02 Å) and therNC is the N–C bond length (taken to be 1.32
Å). The apparent values ofDs9C thus obtained are plotted in
Fig. 8 against residue number. We obtain an average value of
2776 36 ppm, over the protein backbone. It is encouraging to
note that, despite the crudeness of the assumptions, the average
value obtained is consistent with that calculated using principal
values of the shift tensor measured in the solid state (34).
Assuming experimental values ofs11, s22, and s33 for Z-
acetanilide from (34) andu1 5 30°, u2 5 120°, andu3 5 90°,
we obtain a value of288 ppm forDs9C.

The absolute values ofDs9C obtained in the helical regions of
the protein seemed in general to be lower than those found in
the nonhelical regions. Considering those residue types found
in both helical and nonhelical regions of the protein, we see
that this is indeed true. There are three glutamine residues in
nonhelical regions; these show an average value of291 6 12

FIG. 6. The sum dataset from the experiment to determinehC in 15N,13C-labeledE. coli DnaJ(1–78). The difference dataset is similar in appearance.
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ppm for Ds9C as opposed to a value of230 6 2 ppm for the
lone glutamine residue found in the helical region. For lysine
residues (two residues) and an alanine residue (one residue),
the values in the nonhelical regions are2120 6 40 and
2121 6 6 ppm, respectively. While the corresponding values

in the helical regions for these two residue types (five lysines
and seven alanines) are279 6 10 and 295 6 20 ppm,
respectively. It has been suggested that helical regions tend to
be more strongly hydrogen-bonded than the corresponding
nonhelical regions (10). Estimating the principal values of the

FIG. 7. Values ofhC plotted against residue number forE. coli DnaJ(1–78).

FIG. 8. Values ofDs9C plotted against residue number forE. coli DnaJ(1–78).
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13C9 shift tensor from Fig. 2 of (10) for strongly and weakly
hydrogen-bonded systems, andu values as before, we find that
Ds9C should have a smaller absolute value in regions of strong
hydrogen bonding than in those of weak hydrogen bonding by
about 20 ppm. Two of the best defined helices in DnaJ(1–78)
run from residues 16–31 and 41–56. Examination of Fig. 8
shows some suggestion of a trend toward lower absolute values
in these regions with a few higher values in the loop at the end
of the 16–31 helix.

Establishing a more concrete correlation would require
application to a more symmetric protein and possibly some
improvement in experimental precision. As illustrated in
Eqs. [3]–[4] and [14], consideration of anisotropic diffusion
and the nonaxially symmetric shift tensor introduces addi-
tional variables that complicate separation. There could also
be several sources of error in the measuredh values. Among
these is the fact that we have used selective pulses on13Ca

in the experiments to determinehC, in order to remove
interference effects due to cross correlation between13C9
CSA and13C9–13Ca dipolar couplings and that between the
15N–13C9 and 13C9–13Ca dipolar couplings. This is only
correct to first order (36). Incomplete inversion of the13Ca

would lead to further errors.
Despite the limitations presented above, we have pre-

sented here a set of experiments which demonstrate an
ability to measure cross-correlation rates for both15N and
13C9 sites along a protein backbone. These rates normally
depend on both dynamics and projection of CSA tensors on
dipolar vectors. In the case of the15N cross-correlation
rates, and spherical or nearly spherical proteins, it is possi-
ble to separate these effects because the15N shift tensor is
axially symmetric and the angle made by the principal axis
of the shift tensor with the NH internuclear vector is small,
leading to a simple relationship between cross-correlation
spectral density functions and autocorrelation spectral den-
sity functions. Autocorrelation spectral densities can be
estimated from15N relaxation experiments and CSA values
determined. However, the15N shift tensor proves not to be
very sensitive to structural variations along the protein
backbone. The case of13C9 is more interesting, with pre-
liminary results showing a qualitative correlation between
CSA projections and hydrogen bonding. But, here, accurate
separation of the structural and dynamic contributions to the
cross-correlation rates is very difficult even in the case of
spherical molecules. This is because the13C9 shift tensor is
not axially symmetric. One hopeful note is that it may be
possible to study the effects of cross correlation of the13C9
CSA with two different internuclear vectors such as15N–
13C9 (as done here) and13C9–13Ca. These two vectors make
a fixed angle with respect to each other and are part of the
same amide bond, allowing one to assume that they expe-
rience similar local motion. This may allow more insight
into variations of the13C9 CSA with structure in proteins.

APPENDIX

Exact expressions for cross-correlation functions involv-
ing chemical shift anisotropy and dipolar coupling interac-
tions can be derived in the limit of an axially symmetric
chemical shift tensor and when the overall tumbling is
axially symmetric. The derivations are based on those due to
Szabo (37). A more complete treatment can be found else-
where (38). The relevant cross-correlation function,Gcd(t),
in this case can be written as

Gcd~t! 5
2

5
^P2@ec~t! z ed~0!#&, [1]

whereec(t) anded(0) are the unit vectors in the directions of
the principal axis of the shift tensor at timet and that along the
IS internuclear vector at time 0, respectively. Using the spher-
ical harmonic addition theorem (39), [1] can be rewritten as

Gcd~t! 5 O
m522

2

^Dm0
2* ~Vc~t!!Dm0

2 ~Vd~0!!&, [2]

where Vc(t) and Vd(0) are the orientation of the principal
axis of the shift tensor at timet and that of the IS internu-
clear vector at time 0 in the lab frame, respectively. In order
to separate the internal and overall motion, we transform
into the molecular frame (principal axis frame of the diffu-
sion tensor) in which thez-axis lies along the direction of
the principal component of the axially symmetric diffusion
tensor. Thus, [2] transforms to

Gcd~t! 5
2

5 O
lmn

^Dml
2*~VM~t!! Dl0

2*~Vc9~t!!

3 Dmn
2 ~VM~0!! Dn0

2 ~Vd9~0!!&, [3]

whereVM(t) andVM(0) denote the orientation of the principal
axis of the diffusion tensor in the lab frame at timet and 0,
respectively.V9c(t) andV9d(0) are the orientations of the prin-
cipal axis of the shift tensor and the internuclear vector in the
molecular frame, respectively. If the overall motion and the
internal motion occur on timescales which are very different
from each other, the averaging of the two parts in [3] may be
performed separately, and we have

Gcd~t! 5
2

5 O
lmn

^Dml
2*~VM~t!! Dmn

2 ~VM~0!!&

3 ^Dl0
2*~Vc9~t!! Dn0

2 ~Vd9~0!!&, [4]

where the first term in brackets in [4] signifies the overall
tumbling of the molecule and the second term denotes the
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internal motion. For an axially symmetric diffusive overall
motion we have

O
m

^Dml
2* ~VM~t!! Dmn

2 ~VM~0!!&

5 d lnexp@2(6D2 1 l 2~D1 2 D2!!t], [5]

where D1 and D2 are the principal values of the diffusion
tensor parallel and perpendicular to the unique axis of the
diffusion tensor, respectively, anddln is the Kronecker delta
symbol. Using [5] in [4] we have

Gcd~t! 5 O
l522

2

exp@2~6D2 1 l 2~D1 2 D2!!t#

3 ^Dl 0
2* ~Vc9~t!! Dl 0

2 ~Vd9~0!!&. [6]

In the absence of internal motionV9c andV9d are time-indepen-
dent and [6] transforms to

Gcd~t! 5
2

5 O
l50

2

exp@26D2 1 l 2~D1 2 D2!!t]

3 d l 0
2 ~uc!d l 0

2 ~ud!cos@l ~fc 2 fd!#

5
2

5 O
l50

2

Al
xexp@2~6D2 1 l 2~D1 2 D2!!t#, [7]

whereuc andud are the angles made by the principal axis of the
shift tensor and the internuclear vector with the unique axis of
the diffusion tensor, respectively, andfc and fd are the cor-
responding azimuthal angles. For a spherically symmetric mol-
ecule,D1 5 D2 5 D and [6] transforms to

Gcd~t! 5
2

5
exp@26Dt# O

l522

2

Dl 0
2*~Vc9! Dl0

2 ~Vd9!

5
2

5
exp@26Dt#P2@cos~ucd!#, [8]

whereucd is the angle between the principal axis of the shift
tensor and the IS internuclear vector.

In the presence of internal motion, it can be seen from [6]
that one can separate overall and internal motion only for a
given value of l, in the general case. It is known that the
correlation function can be approximated by (exact att 5 0
and t 5 `)

Gcd~t! 5 Gcd~`! 1 @Gcd~0! 2 Gcd(`)]exp[26Defft#, [9]

whereDeff is an effective diffusion constant for the internal
motion. From [6], we see thatGcd(0) is given by [7]. There is
no closed form expression forGcd(`), in the general case.
However, it is correct to assume that the interactions between
the CSA and IS dipolar interactions are scaled down due to
local motion for each given value of l in [6]. In that case,
Gcd(`) can be approximated as

Gcd~`! 5
2

5 O
l50

2

exp@2~6D2 1 l 2~D1 2 D2!!t#~Sx
l !2, [10]

where (Sx
l )2 5 ^d10

2 (uc)cos(lfc)&^d10
2 (ud)cos(lfd)& 1 ^d10

2 (uc)sin-
(lfc)&^d10

2 (ud)sin(lfd)&. It can be seen that theSx
l transform

has components of a symmetric, rank 2 tensor which we call
Sx. These are generalized order parameters for the cross
correlation between the chemical shift anisotropy and dipo-
lar coupling interactions. It should be realized that in the
absence of internal motion (Sx

l )2 5 Al
x and we have the

equality

O
l50

2

Sx
l 5 O

l50

2

Al
x 5 P2@cos~ucd!#. [11]

Using [9] and [10], we have

Gcd~t! 5
2

5 O
l50

2

exp@2~6D2 1 l 2~D1 2 D2!!t#

3 @~Sx
l !2 1 ~ Al

x 2 ~Sx
l !2!exp~26Defft!#. [12]

When the principal axis of the CSA and the IS internuclear
vector are collinear,uc 5 ud and fc 2 fd 5 0 and we have
Gcd(t) 5 Gcc(t) 5 Gdd(t), and the cross-correlation function
which is identical to the autocorrelation function is given by

Gcc~t! 5
2

5 O
l50

2

exp@2~6D2 1 l 2~D1 2 D2!!t#

3 @~Sa
l !2 1 ~ Al

a 2 ~Sa
l !2!exp~26Defft!#, [13]

where (Sa
l )2 5 u^d10

2 (uc)&u2 5 u^d10
2 (ud)&u

2. As above, in the
absence of internal motion (Sa

l )2 5 Al
a and we have the

equality

O
l50

2

Sa
l 5 O

l50

2

Al
a 5 1. [14]

Thus, complete separation of internal and overall motion is not
possible even in the case of autocorrelation functions, in the
general case.
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For a spherically symmetric molecule,D1 5 D2 5 D and
we have from [6],

Gcd~0! 5
2

5
exp@26Dt# O

l522

2

^Dl 0
2*~Vc9! Dl0

2 ~Vd9!&

5
2

5
exp@26Dt#P2@cos~ucd!#. [15]

The cross-correlation function,Gcd(`), is given by

Gcd~t! 5
2

5
exp@26Dt# O

l522

2

^Dl 0
2*~Vc9!&^Dl0

2 ~Vd9!&

5
2

5
exp@26Dt#Sx

2, [16]

whereSx is the generalized Lipari–Szabo order parameter for
cross correlation. Using [13] and [14], we have

Gcd~t! 5
2

5
exp@26Dt#

3 @Sx
2 1 ~P2~cos~ucd!! 2 Sx

2)exp[26Defft##. [17]

Thus, complete separation of internal and overall motion is
indeed possible for spherically symmetric molecules which
undergo isotropic tumbling, and one can indeed represent the
internal motion by a single order parameter which is a scalar
and may be viewed as the trace of that in the axially symmetric
case. For the autocorrelation function in this case, we have

Gcc~t! 5
2

5
exp@26Dt#@Sa

2 1 ~1 2 Sa
2!exp@26Defft##, [18]

whereSa is the commonly used Lipari–Szabo generalized order
parameter. Comparing [15] and [16], we see that in the case of
spherical molecules,

Sx
2 5 Sa

2P2[cos(ucd)]. [19]

From [19] we see thatSx
2 can be positive or negative, less than

or equal toSa
2 depending on the value ofucd, i.e., the geometry

of the system. It should be stressed here that [19]does nothold
in the case of nonspherical molecules. Thus, one has to be very
careful in comparing auto- and cross-correlation order param-
eters in nonspherical molecules; they are not expected to be
related to each other in a simple way.

In the above discussion we assumed that the chemical shift
tensor was axially symmetric. Generalization of the formalism to
the case of nonaxially symmetric chemical shift tensors is straight-
forward, since any nonaxially symmetric rank 2 tensor can be
written as a sum of two axially symmetric rank 2 tensors (1).
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