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We present a simple method for extracting interference effects
between chemical shift anisotropy (CSA) and dipolar coupling
from spin relaxation measurements in macromolecules, and we
apply this method to extracting cross-correlation rates involving
interference of amide *®*N CSA and **N-*H dipolar coupling and
interference of carbonyl **C’ CSA and **N-*3C’ dipolar coupling,
in a small protein. A theoretical basis for the interpretation of
these rates is presented. While it proves difficult to quantitatively
separate the structural and dynamic contributions to these cross-
correlation rates in the presence of anisotropic overall tumbling
and a nonaxially symmetric chemical shift tensor, some useful
qualitative correlations of data with protein structure can be seen
when simplifying assumptions are made. © 1998 Academic Press
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INTRODUCTION

have been able to measure the CSA projections for nuclei i
sites along the protein backbone, which include ammie(2),
amide’H (3, 4 and*C, (5), in solution. The CSA projections
of the nuclei in the*3*C,, sites have been shown to correlate
extremely well with secondary structure, and those in the
amide'H sites show a strong correlation with hydrogen-bond
strength 8, 4). The CSA of the**C’ (carbonyl carbon), which

is quite substantial, is also expected to be very sensitive to loc:
structural effects. There have been some experime6tad) (
and theoretical studie$ (10 on related systems indicating this
fact. Dynamic information arises in a manner similar to its
appearance in autorelaxation rates, but correlation time relate
to the way in which two interaction vectors follow one another
during reorientation. Hence, measurements can compleme
normal spin relaxation measurements. Aside from this poter
tial complementarity, there has also been a renewed interest
more conventional studies of the relaxation behavior of the
13C’ in proteins over the past year or so. These studies, eve

The fact that the interference between chemical shift aniso-

tropy (CSA) and dipolar coupling causes the two lines c}'ﬁ

scalar-coupled doublets to have different linewidth)sig well

known. The interference effects also show up in cross—conle—
lation corrections to various spin relaxation rates that are easil
measured in solution, and the fact that these effects are a us
source of structural and dynamic information is being incre
ingly appreciated. With sufficient measurements it is in pri
ciple possible, although in practice difficult, to separate dy-
namic and structural factors. In this paper we provide a simp ﬁ
method for measuring interference effects between CSA af
dipolar coupling in a scalar-coupled two-spin system, al

present a theoretical basis for their interpretation.

&

ithout cross-correlation consideration, provide insight into
e dynamics of the protein backborigd {19 and complement
he information obtained from amidéN relaxation studies.
. The method for measuring CSA—dipole cross-correlation ef
egy{:](]s presented in this paper is based on that proposed by Tjanc
nd Bax R). Our modification simplifies the dependence of the
signal intensity on the relaxation delay. We apply this method tc
xtract the cross-correlation rates between artile’H and the
mide >N CSA in a **N-labeled protein, a fragment of the
peron protein Dna2®). This is followed by the application to
3C, ™N-enriched form of the same protein, to extract cross-
correlation rates betweeAC’ CSA and™N(i + 1)-°C'(i) dipo-
lar coupling. We also present a preliminary analysis of these rate

Structural information arises from an ability to monitor th?n structural and dynamic terms, pointing out the difficulties one
projection of the anisotropic part of the chemical shift tens?éces in the anal gis when the 6\?erall tSminn of the protein i
onto various bonds connecting s@muclei. Several authors anisotropic Y 9 P :
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THEORY

The two | spin lines of an antiphase doublet for a scalar-
coupled two spinz—(l, S) system may be represented asd
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%(ZI),SZ = 1,). In the case, where the difference in the decagnstant for the internal motiori). The coefficientsA[ are

rates between the inphase and antiphase terms of the dengiXgn by

matrix is much smaller than the coupling constdnand the

relaxation delay is much greater thanJlthe relaxation

rates of F may be approximated as = n, where) is the

average of the inphase and antiphase decay rateq amnithe

cross-correlation rate due to interference effects between the

CSA of spin I and the IS dipolar coupling. In the case of an

axially symmetric chemical shift tensor with principal axis

coincident with the dipolar interaction vector; can be

expressed as where6, and 64 are the angles made by the unique axis of the
shift tensor and the internuclear vector, with the unique axis o
the diffusion tensor, respectively, arg and ¢4 are the cor-

A} = 5 (3 codo, — 1)(3 cosf, — 1)
Al = 2 sin(26,)sin(260,)cod b, — ¢

A; = 3 Sin(6:)sir(6s)cos2e. — o)), [4]

1 Yeysn « « responding azimuthal angleg, (18. As shown in the Appen-
T~ " 6ar I AoB[4J(0) +3T(w)], 1] dix, in the absence of internal motior§lj§? = AX.

The autocorrelation spectral density functions are given b

(see Appendix)
wherer s is the IS internuclear distanc&y = o — o, is the

difference ofo) and o, the parallel and perpendicular com- 5 . . ,

ponents of the principal chemical shift tensor; aif¢0) and Fw) = (S)*n [A? - (S)*7] [5]
J*(w,) are values of the cross-correlation spectral density func- 1+ 0’7} 1+ 0?7

tions The cross-correlation spectral density functidtis) are
defined by

1=0

As in the case of cross correlation, in the absence of intern:
motion, (S,)2 = A2 The coefficientsA? for the autocorrela-
tion spectral density functions are given by

Hw) = j ) G(t)coq wt)dt, 2]
0 A% = (3 cody — 1)

A2 =2 sir?(26
where G°Yt) is the cross-correlation function for chemical 1= g sim(26,)

shift anisotropy—dipolar coupling interference effects (see Ap-
pendix). The latter are in general different from the autocorre-
lation spectral density functiond¥(w).

The situation becomes rather complicated if the overall In order to obtain expressions analogous to conventione
tumbling of the molecule is anisotropit), but some simpli- Lipari-Szabo theory 1(7), we express the auto- and cross-
fication occurs when the rotational diffusion is axially symcorrelation spectral density functions using effective ordei
metric. The cross-correlation spectral density functions, in tHigrameters, as
case, are given by (see Appendig) (

AZ = 2 sint(6,). [6]

2 Al (1-S)r
Pw) = S’% z 1 +|w27|2 + 1+ ozs));T2 [71
) E (S0*m | [Ar = (S)r .
((1)) = = 1+ w27|2 1+ 0)272 ’ [ ] 2 AaT (1 B SZ),T
M) =2 15t 11 e [8]

wherer, = (6D,) %, 7, = (D, + 5D,) %, 7, = (4D, +

2D,) %, and 1f = 1/r, + 2 Tr[D] = 1/7, + (2D, + 4D,) However, it should be realized that, in general, defining one
(it has been assumed that < 1/D,, 1/D,). Here,D is the order parameter for the internal motion is not possible when th
diffusion tensor;D, andD, are the principal elements of theoverall motion is not isotropic (see Appendix). We see that the
diffusion tensor which are parallel and perpendicular to iterder parameters” for cross correlation in [7] and for autocor-
unique axis 2). S, is a component of the generalized orderelation in [8] both give an indication of local order, or a lack
parameter,S, (defined in the Appendix), for CSA—dipoleof it, but there is no simple relationship between the two, anc
cross-correlation, ane, = (6D,¢) * is the correlation time for thus, they would not correlate very well, even in the absence c
internal motion which occurs on a timescale which is mudcinisotropic local motion.

faster than the overall tumblind( is the effective diffusion ~ Things are simplified greatly for isotropically tumbling mol-
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ecules. In this case, the cross-correlation functions are given by o7 ¢8 ACQ
(see Appendix) e )
a bl Ll 1 Lliay,
JX( ) . S>2<Tc (PZ[COiecd)] - S>2<)T [9]
@ 1+ Wit 1+ w7 ’
2t-t1 t1
wherer, = (6D) ' is the rotational correlation time, 4/~ GARP
1/7, + 1/7,, and b4 is the angle between the principle axis ofx | | l I [ ]
the shift tensor and the internuclear vector. This is identical to o1 92 ¢3 ¢4

the expression obtained by Fischetrr al. (19). In this case,
complete separation of the overall and internal motion is pos-
sible and the internal motion can be represented by a single
order parameter. The corresponding autocorrelation function is _‘ ‘ . . .
given by (see Appendix) G

Ga Gb GeGd Gd

Sch (1- Sg)T FIG. 1. Experiments to estimatg,. Scheme I: The narrow and thick lines
1+ szg 1+ @272 [10] representr/2 andm pulses, respectively. The short thick bars at the end of the
experiment represent selectivé2 pulses on water. All pulses are along the
. . _x-axis unless otherwise statefl; = { x, —x}; ¢, = {2(X), 2(—X)}; ¢35 =
For most reasonable models of motion of nuclei in the pepthig}; ba = {4(X), 4(=0}: ds = {2(X), 2(=x)}; and dg = {y, -y}
plane, the cross-correlation order parameter may be apprayiadrature detection i is achieved by cycling, in a States—TPPI fashion.
mated byS? = P,[cos(0.q)]S2 when 6.y is small. Using this All gradients are 1.5 ms long and are of strength 29 G/cm, ex@gptvhich

in [9] and comparing with [10], we have is 23.2 G/cm. The dela§ is set approximately 2.6 m&, andG,4 were along
’ the x- andz-axes;G,, and G, were alongx- andy-axes. In scheme 11, thiH

/2 pulse labeled,, theH 7 pulse labeledpg, and the gradien®, were not

J(w) = Py[coq 6.9) | IX (). [11] applied.

o) =

Using [11] in [1], we have for an isotropically tumbling mol-
ecule with an axially symmetric chemical shift tensor symmetric components of the shift tensor with the IS inter-
nuclear vector. The quantity within the brackets in [14]
1 po ¥eysn 1 . is the projection of the anisotropy of the shift tensor on
M= " 64r 1% Ao 2 (3 coSeg — 1) Bo[4J%(0) + 33X witte IS internuclear vector and is representeddlay. How-
[1@yer, it should be remembered that [14] is a crude approx-
imation since both* and 6? cannot be close to zero at the

It is possible to extend [1] to the case where the chemicg®me time.
shift tensor is not axially symmetric. In that case it may be
written as a sum of two axially symmetric shift tensors each EXPERIMENTAL DESIGN

with its unique axis 1) allowing [1] to be rewritten as
The pulse sequences we propose for the measurement of

the cross-correlation ratg, are shown in Figs. 1a and 1b.
By, >, Aaf4¥¥(0) + 37®(w)], [13] An inspection of these sequences reveals that they are, in
k=12 essence, identical to those proposed by Tjaretral. (2),
except for one major difference—the relaxation delay is
whereAd,; = (033 — 05) andAo, = 3 (035 — 03,) are the decremented with the evolution time, in an accordiaf<
effective anisotropies for the two axially symmetric parts of tha3) fashion. Thus, it has a value ofrZor the very firstt,
shift tensor andr;; (i = 1, 2, 3) are the principal componentgoint and a value of 2 — t, at an intermediatg, point. Both
of the shift tensor. In the case of a spherically symmetrgchemes are based on the following principle: one starts
molecule, which tumbles isotropically, this, in analogy to [12)with a density operator given by 8, at the beginning of the
yields relaxation delay, and the two components of the antiphase
doublet, represented @(ZIYSZ = 1), relax with relaxation
1 wo v2ysm ) , rat_es given by _i m. This differential relaxation causes a
M= T 64nr 1L [A0.P,(cod0cy) + Ao,Py(cog6cy))]  buildup of the in-phase componenj &t the end of the
relaxation period, 2 — t;. For the very firstt; point, the
X [4J%0) + 3J%(w))], [14] relevant portion of the density matrix after the relaxation
delay (which in this case is equal te)2nay be expressed as
where 634 and 624 are the angles made by the two axialll,S,[e 2**™M7 4 @ 20=M7] 4 | [e2(*mM7 — g=20=m7] For

_ lpoofysm
M= " 64m 13
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any arbitraryt; point, the density matrix at the end of thénowever, is not the case. Consideration of the details of chen

relaxation period (2 — t;) may be represented by ical shift evolution during,; shows that some additional data
manipulation is required before taking the sum and difference
o(21 —ty) = 2|ysz[e*<“n><27*tl) + e (Amm@rw] as in [17]. Inspection of Fig. 1 reveals that after the relaxatior

period, (Z — t;), the magnetization is stored alomgn both
[15lschemes. In scheme I, thel (7/2), pulse immediately after

o ) ) the relaxation period generate2|,S, magnetization (where
The scheme shown in Fig. 1 is designed to detect the compo= 15\ and S= 1), and this is defocused using a gradient.

nent of the density matrix which is represented pgtithe end Tpe subsequent®™N (w/2) is cycled in a States—TPPR4)

of the relaxation period (2 — t;); we call this scheme I. The ta5hion , ). In the case of scheme I, &N (w/2), creates

experiment to detect the B, component (called scheme ) is_ which at the start of the, evolution period is-21,S,. The

similar to that in scheme 1, except that thde w2 pulsedy, "M evolution of this term during, is given by—21.S,cos(t,) —

7 pulsedg, and gradienGy, are not applied. Assuming for th_e2|ySZSin(wt1). Only the second term is finally detected since

time being that chemical shift evolution can be made identicde first is converted to undetectable double guantum cohe

for the two schemes and these effects can be represented Ry . This point constitutes the real part of the complex mag

functionF(w, t,), we obtain the signals in schemeQ{) and  petization, int,. The imaginary part is generated by tHe

scheme Il QQ,) at the beginning of the detection period as (wl2), pulse, which creates.|At the beginning oft; this gen-
erates 2JS,, which evolves as 25,cos(t;) — 21, S;sin(wt,).

+ 1 [e(rw@rt gt

Q1 = (127 = K[ e"™ — e e ™F(w, 1)) Again, only the 2JS, part is detectable. Thus, the oscillatory
Q, = (2,S)(27) part of the magnetization in scheme | may be represented ¢
{Re part, Im part}= { —sin(wt,), cost,)}. In scheme lII, the
= Kle " "e™™ + e e M F(w, 1y), [16] *H (/2), pulse after the relaxation delay 2~ t;) and the

gradient following it are not applied. Using similar arguments
whereK is a constant which relates to the measured signahd a simple product operator treatment, as in the case
intensity. As is evident from Fig. 1, the length in time of th&cheme |, we have, for scheme I, {cag(), sin(wt,)}. To
two schemes is the same and so are the relaxation losses (¢@@erate an identical evolution behavior to scheme | we firs
very good approximation); thus is taken to be the same inexchange real and imaginary parts for the signal in scheme
both expressions (i.e., f@, andQ,). We construct two new to get {sin(wt,), cos(t,)}; then we replacev by —w (equiv-
dataset®), andQ;, which are obtained by taking the sum andlent to complex conjugation) in the transformed signal for

difference of the two signals. These are given by scheme II, to obtain {sin(wt;), cos(t,)}, which is identical
to scheme I. This allows us to perform the addition and
Q, = Q.+ Q; = 2K[e 2 "7)e""F(w, ty) subtraction to generate the two datasets in [17].
The extension of the two schemes shown in Fig. 1 to ar
— _ — —2(A=n)T]a—Mt1
Qs = Q:— Q= 2K[e "le (o, ). [17] experiment to measungfor the cross correlation betweé?C’

_ _ _ , CSA and**C’'-**N dipolar coupling is quite straightforward.
The ratio on§ to QU gives a.partlcularly simple dependencery,o pulse sequences are based on an HNESPtype exper-
on the relaxation time. This is represented by iment as shown in Fig. 2 (scheme I). In the correspondinc
scheme I, the™N /2 pulsedg and the'>N 7 pulse ¢4 are
% _ 4n7[e”‘1] [18] not applied. There are, however, a few important points tc
Q, et note. The two selectivé®C, pulses are applied during the
relaxation period in order to prevent the buildup of terms
Thet, dependence can be removed by using the integrals of thie 21,M, (I = *3C’, M = *°C ) from 21,S, (S = **N) due
Fourier-transformed, datasets represented by the numerattw cross correlation between théC'-*°C, and **N-*°C’ di-
and the denominator of [18]. Amplitudes of peaks in thpolar interactionsZ6) or the buildup of 4M_S, due to cross
transformed spectra can also be used if the valugisfsmall correlation between th&C’ CSA and the*C'-**C,, dipolar
and identical window functions are used for the sum andteraction. A gradient is also applied during thestorage
difference datasets. Simulations with grvalue of 4.0 S, a period after the relaxation delay in scheme II, which destroy:
27 value of 70 ms and a Kaiser window (argument 10) shosome additional spurious terms.
that using peak amplitudes underestimates the valug loy The advantages of the above schemes in comparison to th
~15% (this decreases with decreasingvalues), whereas originally proposed by Tjandret al. (2) are open to debate. In
using integrated intensities yields the correct value. We thefact, by taking appropriate sums, differences, and ratios of th
fore chose the latter option. two data sets collected by Tjandzaal.,an identical functional
In the above discussion we assumed that evolution of thedationship between andr can be derived. However, the data
relevant terms during, was the same in the two schemes bygollection in our case, for a given is actually collected over
using the samé-(w, t;) for both Q, and Q, in [16]. This, arange of relaxation delays gsis incremented. There may be
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FIG. 2. Experiments to estimatg.. Scheme I: The phase cycling is as follows; = {y, —y}; ¢, = {2(x), 2(=X)}; ¢35 = {4(X), 4(—x)}; b, = {x};
b5 = {8(X), 8(—X)}; de = {16(X), 16(—x)}; and ¢, = {—X, 2(X), —X, X, 2(—X), x}. The *3C, pulses are off-resonance square pulses. 6 =/2
andr are adjusted in RF strength to 815/(4r) and\V/3/(27) in length, respectively, in order to prevent excitatiod 3E,, (the carrier was placed in the center
of the 13C’ region andr is the difference in Hz between the center of 1€’ region and thé=C, region). The gradient§,, G,, G., andG, are of duration
1.0 ms and have strengths 10.0, 26:30.0, and 20.0 G/cm, respectively, was of duration 1.5 ms and had a strength of 32.0 G/cm. The corresponding valu
of duration and strength fdB; andG4 were 2.0 ms and 32.0 G/cm, and 0.5 ms and 10.0 G/cm, respectively. The 8lelagid are approximately 2.6 and 12.5
ms, respectively. In scheme |l, theN 7/2 pulse labeledpg and the'>N 7 pulse labeledp, were not applied.

advantages in collecting over a range of relaxation times in thmimber of points in the direct dimension was 512. The swee|
systematic errors that arelependent may average to a smallawidths in the direct and indirect dimensions were 6006.0 ant
value. There is also some advantage in having data presentetim9.0 Hz, respectively. The data in both dimensions wer:
a form in which the option of directly extracting relaxationapodized using a Kaiser window and zero-filled to double the
rates by fitting the, time dependence presents itself (see Edize (or to the nearest power of 2) prior to Fourier transforma
[18]). In that case, where auto- and cross-relaxation rates geh. A series of spectra were also collected with=2 52.0,
equal, the dependence @, is particularly simple. The au- 62,0, 72.0, 82.0, 92.0, and 102.0 ms, with matrix sizes o
torelaxation ratep, in the case of°N, is dominated by the g4(;,) x 512(,), with 32 transients collected pey point.
"*N-"H dipolar interaction at low field and is initially indepen-The indirect sweep width in these cases was taken to be 1538
dent of the strength of the applied static magnetic field. The, The data were processed in the same way as above. T
cross-correlation ratg, on the other hand, increases Iinearlydday between scans was set to 2.0 s for all the above expe
with the applied static field strength. At appropriate high fieldS,ants Al experiments to determing, were performed on
these two rates become equal. Peruvshiral. have taken GE Omega spectrometer operating atrhfrequency of 500

advantage of the cancelation of these two rates to maximiléﬁ_|Z and equipped with a triple resonance probe capable c
resolution in heteronuclear 2D experiments. It can be se

Cnerating magnetic field gradients along all three axes.
from [17] that under these conditions, and prior to Fourie‘i The exgerim%nts to detegrmi were gerformed on a 2.0
transformation irt,, the individual indirect FIDQ;, can be fit ¥ ke P i

as a function of, to obtain a value for mM N, *3C-labeled sample oE. coli DnaJ(1-78) in phos-

! ' phate buffer at pH 6.0, at 30°C. Duplicate sets of data wert
collected for each scheme withr2= 50.0 65.0 ms. One
hundred twenty completq points were collected with a sweep

The experiments to determinﬁ\l were performed ona30 width of 2500.0 Hz in thé3C’ dimension, with 64 transients
mM *N-labeled sample oE. coli DnaJ(1-78) in phosphatepPert; point; 256 complex points were collected in the direct
buffer at pH 6.0, at 30°C. The preparation of the protein and f§mension with a sweep width of 6000.0 Hz. The recycling
structural characterization have been discussed in previgl@ay was set to 2.0 s as in the case of fi¢ experiments. A
publications 28, 29. Duplicate datasets for each scheme wer®/2 pulse on3C’, followed by the application of a gradient, at
collected using 2 = 75.0 ms with 110 complex points in thethe start of the experiment, helped destroy tf@’ magneti-
N dimension, acquiring 64 transients per indirect point. Theation. The data were processed in the same way as in the cz

EXPERIMENTAL
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FIG. 3. The sum dataset from the experiment to determjgen °N-labeledE. coli DnaJ(1-78). The difference dataset is similar in appearance.

of the m data. All the3C data were collected on a Varianthe one in question. In the Bayesian analysis, the frequencies
Unity spectrometer operating at'#l frequency of 500 MHz, these resonances were supplied along with the frequency of tt
equipped with a triple-resonance probe capable of generatiegonance in question, and the correspondijngalues were
magnetic field gradients along tizeaxis. All data were pro- extracted. The values of thus obtained were consistent with
cessed using the Felix 95.0 suite of programs available fraffbse obtained directly from [18] though the errors were 5—6%

Biosym/MSlI, San Diego, CA. larger for the residues considered.
The ny values displayed in Fig. 5 were estimated from the
RESULTS AND DISCUSSION 75.0-ms datasets using [18] directly. This method was the lea:

. N time consuming and as mentioned above produced resul
The sum dataset for th&N case is shown in Fig. 3 (the c8nsistent with the other two methods, i.e., nonlinear leas

difference dataset is visually similar). This resembles an Hs%quares fits for various values and Bayesian estimation pf
spectrum. The spectrum shows very good dispersion indbth .
values from th&  andQj; interferrograms. The random errors

and*H dimensions, and the values g can be measured for 62Were estimated from two identical experiments. The values o
(well-resolved) out of the 78 residues. The signal buildup as a P ’

function of the delay, 2 for a few residues is shown in Fig. 4y "y Seem to be quite uniform over the DnaJ(1-78) sequenc

; 1
estimated from the buildup curves using a nonlinear least squeﬂ@g'r,'g an a\./ehrarg]]e of 4.6 0.8 dsf . The av.erar?.e vglues are
fit to [18] yielded values which were consistent with those ofPnSistent with those expected for a protein this size 82).

tained directly from [18] for a given value ofi2The fits to [18] S°Me€ smaller values were found at the N and C terminal enc
were performed using the ODRPACK subroutingg) and near residues 34, 38, 41, 53, and 64. Residues 34, 38, a

Individual t; FIDs for the sum Q,) and difference Q;) 41 arg part of an exte.nded Iogp betweehelices which end
were also analyzed for a few select residues for the 75-@kresidue 31 and begin at residue 41 and lower values may
dataset (results not shown). The FIDs were obtained by seld&flecting shorter correlation timeg8). Increased mobility for
ing a crosspeak in transforme@l, and Q; spectra loading a this region is also reflected 17N relaxation rates and NOEs.
column through a giveA®N chemical shift and then inverse The origin of the decrease at 53 and 64 is less clear.'Tke
Fourier transforming in the, dimension. The values of were chemical shift tensor is known to be almost axially symmetric
estimated from the FIDs by Bayesian analysis using the piith the principal axis of the shift tensor making an angle of
gram XRambo §1). In this case some effort must be made t80—24° with respect to the NH internuclear vector. The magnitud
take account of leakage from nearby columns. On inversAo is about—160 ppm 83—-35. Variation in these values could
Fourier transformation, the FID obtained may contain comp&ad to the noted decreases, but existing data suggest that the
nents due to those resonances Witk chemical shifts close to values seldom vary over the protein backba®e (
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FIG. 4. Buildup of the signal (for the experiments to determif)g as a function of relaxation delayr2plotted for selected residues, showing the range
of buildup rates ).

It is to be mentioned here that DnaJ(1-78) is a highlnisotropic though axially symmetric. For a protein this aniso-
nonspherical protein; the principal moments of inertia are inopic, it is to be expected that there would be some variatiol
the ratio 1.0:0.91:0.26 (almost axially symmetric). Thus the relaxation behavior due to different angles of interaction
overall tumbling of DnaJ(1-78) can be considered highlyectors with respect to diffusion axes. There would also be
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FIG. 5. Values ofn, plotted against residue number fér coli DnaJ(1-78).
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FIG. 6. The sum dataset from the experiment to determjpan *°N,**C-labeledE. coli DnaJ(1-78). The difference dataset is similar in appearance.

some divergence of the cross-correlation- and autocorrelatigince the NH and the NC vectors are part of an approximatel
dependent relaxation parameters. However, these vanish agidid peptide unit, they experience similar local motion and
angle between the principal axis of th#\ shift tensor and the hence share the same autocorrelation spectral density functic
NH internuclear vector becomes small. Thus, some of tl&0). It would then be possible to obtain a measure fot
variation in Fig. 5 may also come from the anisotropic overalvhich is the projection of th&’C’' CSA on the NC internuclear

tumbling of the protein. vector by using the expression
A spectrum resulting from the sum dataset for the
experiments is shown in Fig. 6 (the difference dataset is visu- re\3 (3 cogh — 1
ally similar). This resembles a 2D HNCQ@%) spectrum with Ag’ = ¢ (yw“) <NC) (f) Aoy, [19]
the indirect dimension yielding®C’ chemical shifts and the Mo ve /A

direct dimension yielding amid&H chemical shifts. The dis-
persion is moderately good in the indirect dimension and céfere Aoy, is the chemical shift anisotropy 6PN (assumed to
be improved by extending the experiment to three dimensiolbs —170.0 ppm),0 is the angle between the NH internuclear
by using amidé®°N evolution. As is shown in Fig. 7, the valuesvector and the principal axis of tHéN chemical shift tensor
of mc show a larger deviation along the DnaJ(1-78) sequen@ssumed to be 20°), is the N—H bond length (taken to be
than in the case of the, values. The average value for 511.02 A) and the . is the N-C bond length (taken to be 1.32
(well-resolved) of the 78 residues was0.9 + 0.4 s*, a A). The apparent values dfo.- thus obtained are plotted in
reasonable number in view of expectations for a molecule Big. 8 against residue number. We obtain an average value
this size. But, the variation is at first surprising. —77 = 36 ppm, over the protein backbone. It is encouraging tc
As in the case of°N, both differences i\ andJ(w) could note that, despite the crudeness of the assumptions, the aver:
contribute to the variation in the values gf over the protein value obtained is consistent with that calculated using principa
backbone. But, unlike th&’N case, there is reason to expectalues of the shift tensor measured in the solid sta®). (
some variation inAc due to hydrogen bonding and otheAssuming experimental values @f,;, o5, and og5 for Z-
effects. Ideally we would like to separatr andJ(w) effects acetanilide from34) and6, = 30°, 6, = 120°, andf; = 90°,
so these variations can be observed. If we assume a moaelobtain a value of-88 ppm forAog¢.
where the saméd(w) terms contribute to bothy andn, as The absolute values dfo obtained in the helical regions of
would be the case in an isotropic model, we can attempt ttee protein seemed in general to be lower than those found i
separate contributions due to variationsl{w) andAg. This, the nonhelical regions. Considering those residue types foun
of course, is not strictly valid for DnaJ(1-78) but can, nevem both helical and nonhelical regions of the protein, we se¢
theless, be instructive. Under this assumptigg rates can be that this is indeed true. There are three glutamine residues |
used to estimat@®(0) from [12]. It can be further assumed thanhonhelical regions; these show an average value@f + 12
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FIG. 7. Values ofr plotted against residue number fér coli DnaJ(1-78).

ppm for Ac¢ as opposed to a value 6f30 = 2 ppm for the in the helical regions for these two residue types (five lysine:
lone glutamine residue found in the helical region. For lysirend seven alanines) are79 = 10 and —95 = 20 ppm,
residues (two residues) and an alanine residue (one residue3pectively. It has been suggested that helical regions tend
the values in the nonhelical regions arel20 = 40 and be more strongly hydrogen-bonded than the correspondin
—121 = 6 ppm, respectively. While the corresponding valuasonhelical regions1(0). Estimating the principal values of the

-Ac.’ (ppm)
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FIG. 8. Values ofAc¢ plotted against residue number fér coli DnaJ(1-78).
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3¢’ shift tensor from Fig. 2 of 10) for strongly and weakly APPENDIX

hydrogen-bonded systems, afidalues as before, we find that

Ac- should have a smaller absolute value in regions of strongEXact expressions for cross-correlation functions involv-
hydrogen bonding than in those of weak hydrogen bonding @ chemical shift anisotropy and dipolar coupling interac-
about 20 ppm. Two of the best defined helices in DnaJ(1—7t§3nS can be derived in the limit of an axially symmetric

run from residues 16-31 and 41-56. Examination of Fig. §'€mical shift tensor and when the overall tumbling is

shows some suggestion of a trend toward lower absolute valgé‘ga”y symmetric. The derivations are based on those due t

in these regions with a few higher values in the loop at the e (iabo 87. A more complete treatment. can be fou?dd else-
where @8). The relevant cross-correlation functio@;(t),

of the 16-31 helix. ; : .
L . .in this case can be written as
Establishing a more concrete correlation would require

application to a more symmetric protein and possibly some 5

improvement in experlme.ntal p.reC|S|on.. As |Ilgstr.ated' in G(t) = : (P,[e(t) - e,(0)]), 1]
Egs. [3]-[4] and [14], consideration of anisotropic diffusion

and the nonaxially symmetric shift tensor introduces addi-

tional variables that complicate separation. There could algthereec(t) andey(0) are the unit vectors in the directions of
be several sources of error in the measufelues. Among the principal axis of the shift tensor at tihand that along the
these is the fact that we have used selective pulseS@p |S internuclear vector at time 0, respectively. Using the spher
in the experiments to determing., in order to remove ical harmonic addition theoren9), [1] can be rewritten as

interference effects due to cross correlation betw&¥

CSA and*3C’-*3C, dipolar couplings and that between the 2
15N-13C’ and °C’-*°C, dipolar couplings. This is only G(t) = D (D& (Q(1)D2(024(0))), (2]
correct to first order36). Incomplete inversion of th&C,, m=-2

would lead to further errors.

Despite the limitations presented above, we have prehere (. (t) and Q4(0) are the orientation of the principal
sented here a set of experiments which demonstrate axis of the shift tensor at timeand that of the IS internu-
ability to measure cross-correlation rates for b&iN and clear vector at time 0 in the lab frame, respectively. In orde!
3¢’ sites along a protein backbone. These rates normalfy separate the internal and overall motion, we transforn
depend on both dynamics and projection of CSA tensors 80 the molecular frame (principal axis frame of the diffu-
dipolar vectors. In the case of theN cross-correlation sion tensor) in which the-axis lies along the direction of
rates, and spherical or nearly spherical proteins, it is pos&i€ Principal component of the axially symmetric diffusion
ble to separate these effects because'fheshift tensor is €NSor- Thus, [2] transforms to
axially symmetric and the angle made by the principal axis
of the shift tensor with the NH internuclear vector is small,
leading to a simple relationship between cross-correlation
spectral density functions and autocorrelation spectral den-
sity functions. Autocorrelation spectral densities can be X D&n(Qu(0)) D3o(24(0))), (3]
estimated from®N relaxation experiments and CSA values
determined. However, thE€N shift tensor proves not to bewhere{,,(t) and(,,(0) denote the orientation of the principal
very sensitive to structural variations along the proteiaxis of the diffusion tensor in the lab frame at tirh@nd 0,
backbone. The case dfC’ is more interesting, with pre- respectivelyQ/(t) andQ(0) are the orientations of the prin-
liminary results showing a qualitative correlation betwee@ipal axis of the shift tensor and the internuclear vector in the
CSA projections and hydrogen bonding. But, here, accurdt¥lecular frame, respectively. If the overall motion and the
separation of the structural and dynamic contributions to tféernal motion occur on timescales which are very different
cross-correlation rates is very difficult even in the case §m each other, the averaging of the two parts in [3] may be
spherical molecules. This is because 1@’ shift tensor is Performed separately, and we have
not axially symmetric. One hopeful note is that it may be
possible to study the effects of cross correlation of ff@
CSA with two different internuclear vectors such -
13C’ (as done here) anfC’-*3C,. These two vectors make
a fixed angle with respect to each other and are part of the X (D5 (Qc(1)) D&H(24(0))), (4]
same amide bond, allowing one to assume that they expe-
rience similar local motion. This may allow more insightvhere the first term in brackets in [4] signifies the overall
into variations of the'3C’ CSA with structure in proteins. tumbling of the molecule and the second term denotes th

2
GH(t) = ¢ 2 (DA (Qu(1) DEF(Qe (1)

Imn

2
G(t) = g 2 (Dai (Qu(1) D7(u(0)))

Imn
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internal motion. For an axially symmetric diffusive overallvhereD. is an effective diffusion constant for the internal

motion we have motion. From [6], we see thd_40) is given by [7]. There is
no closed form expression faB°Y(«), in the general case.
S (D (Q(1) D2, (Q24(0))) However, it is correct to assume that the interactions betwee

the CSA and IS dipolar interactions are scaled down due t
, local motion for each given value of | in [6]. In that case,
= pnexd —(6D, + 1Dy — D))t],  [5] G°Yw) can be approximated as

2
where D, and D, are the principal values of the diffusion  cq :E exd — (6D, + 12D, — D))t 2 10
tensor parallel and perpendicular to the unique axis of the =) 5 go H—(6D: (O: NS, [10]
diffusion tensor, respectively, angl, is the Kronecker delta
SymbOl. USIng [5] In [4] we have where S()Z _ 0(60)005(¢c)><d O(Od)cos(d)d)) + <d 0(00)S|n'

(1do)){d25(0,)sin(l dy)). It can be seen that th8, transform
2 has components of a symmetric, rank 2 tensor which we ca
G%(t) = > exd —(6D, + 13D, — Dy))t] S,. These are generalized order parameters for the cro:
I=-2 correlation between the chemical shift anisotropy and dipo
lar coupling interactions. It should be realized that in the
X . .
(DI (Qe (1) Dio(©2(0))). [6] absence of internal motionS()?> = AX and we have the

i . . equality
In the absence of internal motidd, and(}/, are time-indepen-

dent and [6] transforms to

2 So=2 Al'=Pcog6c]. [11]

G*(t) = g E exd —6D, + I(D; — D))1]
=0 Using [9] and [10], we have

X di(6.)d7(0g)cod (e — dg)]

N

G*(t) = £ > exd—(6D, + I2(D; — Dy)t]
1=0

(3]

2 Yexd —(6D, + 12(D; — Dy))t], [7]

(J'I\l\)

X [(S)? + (AF = (S)?)exp(—6Dest)].  [12]

wheref_ and 6, are the angles made by the principal axis of t
shift tensor and the internuclear vector with the unique axis
the diffusion tensor, respectively, arg and ¢4 are the cor-
responding azimuthal angles. For a spherically symmetric m
ecule,D, = D, = D and [6] transforms to

hen the principal axis of the CSA and the IS internucleatr
vector are collinearg, = 64 and ¢, — ¢4 = 0 and we have
gc"(t) G*(t) = Gt), and the cross-correlation function
which is identical to the autocorrelation function is given by

2 2
G(t) = 5 exd —6Dt] X D& () D)

I=—2

5 2
G*(t) = 5 2 exd — (6D, + 1(D; — D,))t]

=0

5 X [(S)% + (Af = (S)?)exp(—6Det)],  [13]
= — exd —6Dt]P,[coq 6.y |, 8

5 il 1Pd cod6ed] 1] where 8,)2 = [(d2,(0))% = [(d34(6,))]>. As above, in the
absence of internal motionSf)? = A? and we have the
where 64 is the angle between the principal axis of the shitéquality
tensor and the IS internuclear vector.

In the presence of internal motion, it can be seen from [6]

2 2
that one can separate overall and internal motion only for a S s=> Ar=1. [14]
given value of I, in the general case. It is known that the =0 =0
correlation function can be approximated by (exact at 0
andt = =) Thus, complete separation of internal and overall motion is na

possible even in the case of autocorrelation functions, in thi
G(t) = G%() 4+ [G™(0) — G*()]exp[—6D4t], [9] general case.
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